Назад

Содержание

Вперед

 

4.5. Импульсные блоки питания

 

В настоящее время широко применяются импульсные (ключевые) источники электропитания (например, в современных телевизорах и персональных компьютерах), обеспечивающие стабилизацию напряжения. Эти источники характеризуются высоким коэффициентом полезного действия, имеют малые размеры и массу. Уменьшение массы источника обусловлено исключением из схемы силового трансформатора, работающего на частоте 50 Гц, и введением высокочастотного трансформатора, работающего на частоте 20 – 50 кГц. Высокочастотный трансформатор устраняет гальваническую связь между выходом источника питания и питающей сетью. Структурная схема импульсного источника питания приведена на рисунке 4.27. Сетевое напряжение выпрямляется и подается на импульсный преобразователь, который вырабатывает прямоугольные импульсы напряжения частотой 20-50 кГц. К выходу импульсного преобразователя подключается обмотка 1 трансформатора Т1. Импульсный преобразователь за счет наличия обратной связи обеспечивает стабилизацию выходного напряжения импульсного источника питания. Напряжение обратной связи снимается с вторичных обмоток трансформатора Т1. Регулирующий транзистор в импульсном преобразователе работает в ключевом режиме: он либо полностью открыт, либо полностью закрыт. По этой причине потери мощности в регулирующем транзисторе незначительны и коэффициент полезного действия импульсных источников питания получается существенно больше по сравнению со стабилизаторами, у которых регулирующие транзисторы работают в линейном режиме. Обычно ставят два ключевых транзистора, работающих поочередно. В коллекторные цепи ключевых транзисторов включается обмотка I трансформатора через конденсатор. Мощность, передаваемая во вторичную цепь трансформатора Т1, определяется временем открытого состояния ключевых транзисторов. Переменное напряжение высокой частоты с вторичных обмоток трансформатора выпрямляется полупроводниковыми диодами VD5, VD6.  На выходе выпрямителей ставят индуктивно-емкостные фильтры (на рис. 4.27 не показаны). Импульсные источники питания обычно имеют защиту от перегрузок по току и от короткого  замыкания в нагрузке. Основными недостатками импульсных источников

питания являются сложность схемы и наличие высокочастотных помех. Уменьшению высокочастотных помех, проникающих в сеть питания, способствует фильтр C1, C2, C3, L1, L2.

В ключевых стабилизаторах постоянного напряжения, структурная схема одного из которых приведена на рисунке 4.28,  в качестве накопителя энергии используется катушка индуктивности L на ферритовом магнитопроводе. Ключевой транзистор VT1 открывается прямоугольными импульсами напряжения, вырабатываемыми генератором импульсов. За время открытого состояния транзистора ток в катушке индуктивности нарастает. После закрытия транзистора ток через катушку индуктивности поддерживается за счет ЭДС самоиндукции и протекает по цепи: правый вывод катушки индуктивности, резистор нагрузки, диод VD1, левый вывод катушки индуктивности. За счет энергии катушки индуктивности конденсатор С1 продолжает заряжаться и после закрытия транзистора.

На рисунке 4.29 приведена практическая схема стабилизатора постоянного напряжения с выходным напряжением 5 В. Ключевым транзистором является транзистор VT3. При подключении к источнику постоянного напряжения конденсатор С2 первоначально разряжен и транзистор VT4 будет закрыт. Следовательно, транзистор VT1 будет также закрыт, а транзисторы VT2, VT3 будут открыты. Конденсатор С2 начнет заряжаться через катушку индуктивности L1. При определенном напряжении на конденсаторе С2 откроются транзисторы VT4, VT1, а транзисторы VT2, VT3 закроются. После закрытия транзистора VT3 конденсатор С2 еще некоторое время будет заряжаться за счет энергии, накопленной катушкой индуктивности L1. Этот ток будет протекать по цепи: правый вывод катушки индуктивности, конденсатор С2, диод VD1, левый вывод катушки индуктивности. При уменьшении напряжения на конденсаторе транзистор VT4 закроется, и процесс будет периодически повторяться. Частота переключения транзистора VT3 будет зависеть от тока нагрузки. Точное значение напряжения стабилизации подбирается резистором R6. На вход стабилизатора подается постоянное напряжение 8-12 В.

Для уменьшения потерь в ключевых транзисторах во время перехода их из открытого состояния в закрытое и наоборот необходимо использовать высокочастотные транзисторы. Ключевые стабилизаторы постоянного напряжения иногда используют на входе компенсационных стабилизаторов. Это позволяет получить большой коэффициент полезного действия и небольшие пульсации напряжения на выходе стабилизатора.

 

Назад

Содержание

Вперед

Hosted by uCoz